

Introduction to Digitally Assisted Analog and RF Circuit Design

Akira Matsuzawa

Department of Physical Electronics Tokyo Institute of Technology

Contents

 Tradeoffs in analog: area, cost, mismatch, power consumption, and response;

Solution by DAA in DAC

- Power consumption and mismatch in analog
 Solution by DAA in ADC
- Not robust and programmable in analog

Solution by DAA in RF-CMOS Tuner

DAA: Digitally Assisted Analog technology

ΤΟΚ

"Digitally Assisted Analog and RF Design"

What is "Digitally Assisted Analog and RF Design"

To use digital technology for analog and RF circuits as much as possible to solve analog issues.

- Why digital technology is needed...?
 - Digital is more robust and programmable
 - Digital is more power efficient
 - Digital is cheaper and low power in scaled CMOS
- Will analog go out?
 - No, important forever, however needs assists by digital

ΓΠΚΥ

Area, cost, mismatch, power dissipation, and response

The nature of analog and breakthrough by digital assistance

Example: DAC

ΤΟΚ

Cost up issue by analog parts in scaled CMOS

Cost of mixed A/D LSI will increase with technology scaling, due to the increase of cost in non-scalable analog.

5

Pursuing Excellence

& Okada Lab.

ΤΟΚ

Large analog must be unacceptable.

Akira Matsuzawa, "RF-SoC- Expectations and Required Conditions," IEEE Tran. On Microwave Theory and Techniques, Vol. 50, No. 1, pp. 245-253, Jan. 2002

Technology trend in RF CMOS LSI

6

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

Analog & RF CMOS will be replaced by Digitally assisted RF CMOS.

Wireless LAN, 802.11 a/b/g 0.25um, 2.5V, 23mm², 5GHz

Discrete-time Bluetooth 0.13um, 1.5V, 2.4GHz

jure 15.1.7: Die micrograph of the single-chip Bluetooth transceiver.

K. Muhammad (TI), et al., ISSCC2004, pp.268

Nature of analog: Mismatch and area

Mismatch of analog components is inversely proportional to squire root of area.

ΤΟΚ

Matsuzawa & Okada Lab.

Thus accuracy and performance and cost in analog circuits always trade off.

Essential issue in analog technology

To realize high precision circuits always increases power dissipation^{ing Excellence} and area & cost and decreases frequency performance.

The digital assistance can solve this essential issue of analog.

ΤΟΚΥΟ ΤΕΕΗ

Pioneer work in digital assistance

9

ΤΟΚΥΟ ΤΙΕΓΗ

& Okada Lab.

Conventionally large area is required to realize high precision DAC, such "14" bit." However this results in increase of power and degrade frequency characteristics.

lowa university demonstrated extremely small area and power can be realized by digital calibration.

14bit DAC

Y. Cong and R. L. Geiger, Iowa state university, ISSCC 2003

Architecture of digitally compensated DAC

External ADC measure the nonlinearity and CAL DAC compensates it.

An idea is excellent, but the implementation (needs ADC) is not smart.

Y. Cong and R. L. Geiger, Iowa state university, ISSCC 2003

10

Our developed 14b DAC without ADC

ΤΟΚΥΟ

15000

& Okada Lab.

We developed 14b digitally calibrated DAC without ADC for error measurement.

Good SFDR of 83dB has been attained in spite of bare SFDR is 69 dB.

Yusuke Ikeda, Matthias Frey, and Akira Matsuzawa A-SSCC, 13-3, pp 356-359, Korea, Jeju, Nov, 2007.

Method for compensation

Only comparator and cal DAC are required to extract linearity error.

Nature of binary weighted values

$$\frac{1}{2^m} = \sum_{n=1}^i \frac{1}{2^{m+n}} + \frac{1}{2^{m+i}} \qquad \frac{1}{2^5} = \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^8}$$

The error can be extracted by comparing two values and balanced with CAL DAC

12

Pursuina Excellence

ΤΟΚ

Calibration pass and chip photograph

Pursuing Excellence

13

Extracted errors is stored in registers and used for compensation digitally.

Yusuke Ikeda, Matthias Frey, and Akira Matsuzawa A-SSCC, 13-3, pp 356-359, Korea, Jeju, Nov, 2007.

OPamp-base design to comparator-base design

Conventional analog circuits consume static current

Low power dissipation by digital assistance

Example: ADC

Issues of pipeline ADCs

Major issues of pipeline ADCs are caused by OpAmp.

High OPamp gain is required for high precision ADC, however it becomes quite difficult with technology scaling.

 $G_{DC}(dB) > 6N + 10$ 10b:70dB 12b:82dB

Sub-100nm CMOS

$$G_{DC} \approx \left(\frac{V_A}{V_{eff}}\right)^n \approx \left(\frac{1}{0.15}\right)^n \approx 16 dB \times n$$

n < 5 $G_{DC} < 80 dB$

15

Pursuing Excellence

Conversion speed of pipeline ADC

Speed of pipeline ADC is proportional to the OPamp current basically suing Excellence

A. Matsuzawa, "Analog IC Technologies for Future Wireless Systems," IEICE, Tan on Electronics, Vol. E89-C, No.4, pp. 446-454, April, 2006.

16

$$g_{m} = \frac{2I_{ds}}{V_{eff}}$$

$$C_{pi} = \alpha_{pi}I_{ds}, \quad C_{po} = \alpha_{po}I_{ds}$$

Mega-technology trend in ADCs

ellence A major conversion scheme of ADCs is now changing from pipeline to SA

17

ΤΟΚΥΟ

SA ADC

Speed of SA ADC is determined by speed of switches, comparators, and logics

Performance overview of SA ADCs

SA ADCs become dominant in every performance range. In particular FoM has rapidly lowered.

FoM: 1/200 during past three years.

Courtesy Y. Kuramochi

Pursuing Excellence

ΤΟΚΊ

 $FoM = \frac{P_d}{f_c \times 2^{ENOB}}$

Progress of CMOS Comparator

Small size MOS can be used for small mismatch circuits owing to analog compensation, however static current flows.

Trade off

Small area Low power High speed

ΤΟΚΥΟ ΤΕCΗ

Pursuing Excellence

20

Chopper comparator solved this problem

Yukawa, et al., JSC, 1986.

Recent dynamic comparators

Dynamic comparator can cut of the static current, however analog compensation is difficult to use.

FoM can be reduced

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

SP

SN

& Okada Lab.

21

Dynamic comparators use the fast voltage fall depended

Mismatch compensation for dynamic comparator

DTECH Pursuina Excellence

ΤΟΚ

22

We developed mismatch compensation technique for dynamic comparator by using charge pump circuit.

Feedback loop become stable when mismatch reaches zero.

M. Miyahara, Y. Asada, D. paik, and A. Matsuzawa A-SSCC 2008

Effect of digital mismatch compensation

& Okada Lab. 🕼 🌆

23

Mismatch voltage successfully reduced from 13.7 mV to 1.69mV @sigma^{Excellence}

M. Miyahara, Y. Asada, D. paik, and A. Matsuzawa A-SSCC 2008

Small sized SA ADC

One issue of current SAR is not small occupied area. This is due to large capacitance ratio; $C_{MSB}/C_{LSB}=2^{N}$ Serial capacitors can reduce this ratio,

however parasitic capacitors degrade accuracy. We solved it by calibration.

24

Pursuina Excellence

ΤΟΚΥΟ

Effect of digital calibration

TDKYD TIECH PursuingExcellence

25

We can realize 10b ADC with high SFDR of 72dB ADC in world smallest chip size, by using digital calibration technique.

Analog vs. Digital

26

Pursuing Excellence

ΤΟΚΥΟ

Digital (ON, OFF) control can realize lossless conversion.

Analog regulation

modulation

TOKYO TIECH Pursuina Excellence

27

Delta-Sigma modulation method can generate average value without low frequency noise and large super tones.

High frequency noise can be suppressed by filter.

Pulse width control Issues: Large Super tones (Fixed frequency spectrums)

modulator Lowe frequency noise is suppressed

From analog centric RF to digitally assisted RF

Digital is more stable, robust, and programmable

Example: Tuner

Technology trend in RF-CMOS LSI

29

Pursuina Excellence

Analog & RF CMOS will be replaced by digitally assisted analog & RF CMOS. High performance, low cost, stable and robust circuits, no or less external components, no adjustment points, and high testability are the keys. DSP and ADC will play important roles.

Signal processing	Analog circuits Analog processing +External component	DSP+ADC + Small and robust analog ckts.
Adjustment	External	Digital on chip, no external
External components	Large #	No or less
2008.11.06		Matsuzawa 👘 & Okada Lab.

For example: AM/ FM tuner

Current AM/FM tuner uses 3 ICs and large # of external components. Furthermore 12 adjustment points are needed.

Large # of products, but not expensive product. More efforts to reduce the cost are still required.

Courtesy Niigata Seimitsu

ΤΟΚΥΟ

30

Pursuina Excellence

Bipolar IC = 1 (RF) CMOS IC = 2 (PLL, RDS) External Components=187 AM/FM Tuner for home use 12 adjustment points

Analog-centric vs. digitally assisted

Digitally assisted RF-CMOS tuner can provide user merits.

Very small # of external components and no adjustment points.

Analog & RF CMOS technology

External components $187 \rightarrow 69$

Courtesy Niigata Seimitsu

Digitally assisted Analog & RF CMOS technology

of external components are 11 No adjustment points

31

Pursuina Excellence

ΤΟΚΥΟΤ

Analog-centric RF CMOS tuner

TOKYO TIECH Pursuing Excellence

32

1st trial to realize AM/FM tuner by analog-centric RFCMOS technology

Matsuzawa

& Okada Lab.

Analog-centric CMOS tuner technology

1st trial used analog-centric CMOS tuner technology.

External circuits have been replaced by CMOS, however still use analog. Thus it had many issues and many external components were still needed.

Parts	Methods for on-chip	Problems
AM/FM IF BPF	1. Low IF(a few hundred KHz) 2.Gm-C BPF with auto alignment, SCF	 1.poor selectivity(-45dB), 2. SCF Switch noise 3. Center frequency shift by DC offset 4. Poor image rejection ratio (25 to 35dB)
FM Demodulator	Pulse count FM detector	Poor THD (0.5%)
Stereo Decoder	Multi-vibrator VCO, SCF filter	Large variation of free-run frequency Still need external LPF for PLL
RSSI Level adj.	Signal detector with DC compensation	Can't cover all process corner
Varactor	MOS varactor	Too much sharp C-V curve, distorted signal
AGC smoother	Time division charge and discharge	Needs large capacitor for low audio frequency
Capacitors	Stages Direct connection, use small value coupling capacitor	High impedance required, Difficult for low frequency

Pursuina Excellence

ΤΟΚΥΓ

Digitally assisted CMOS tuner

Digitally assisted CMOS tuner has been developed.

DSP realizes

- **AM/FM** demodulations 1.
- 2. Stereo decoder
- 3. AM mixer
- **Channel select filter** 4.
- 5. Support for image reject
- 6. Watch the signal revel and control gain of each stage
- 7. Parameter control and adjustment with MCU

2008.11.06

Sensitivity: FM: 9dBuV, AM: 16dBuV Selectivity: FM/AM >65dB SNR: FM: 63dB, AM: 53dB Stereo sep: 55dB Image ratio: FM: 65dB, AM: Infinity Distortion: FM: 0.09%, AM=0.25%

34

ΤΟΚΥΟ ΤΕΕΗ

Pursuina Excellence

Image rejection in low IF receiver

35

Required gain and phase mismatch

0.1 deg and 0.01% are needed for IRR of 60dB and very difficult to attain by analog technology.

IRR: Image rejection ratio

ΤΟΚΥΟ

36

DTECH Pursuina Excellence

Digital image rejection

The dummy image signal is generated by IMO and the controller controls signal delay and amplitude on Q path to minimize the I/Q imbalance.

37

ΤΟΚΥΟ ΤΕΓΗ

Summary

- Analog has serious tradeoffs
 - area, cost, mismatch, power consumption, and response
- Analog consumes static power
 OPamp-base → Comparator-base
- Analog is weak in robustness and programmability
- Digital assistance can solve these analog issues and will be inevitable and reasonable with technology scaling.
- Analog and RF circuit design will make great advance assisted by digital technology.

TDK