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“Digitally Assisted Analog and RF Design”

• What is “Digitally Assisted Analog and RF Design”

To use digital technology for analog and RF circuits as 
much as possible to solve analog issues.

• Why digital technology is needed…?
– Digital is more robust and programmable
– Digital is more power efficient
– Digital is cheaper and low power in scaled CMOS

• Will analog go out?
– No, important forever, however needs assists by digital
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Tradeoff: 
Area, cost, mismatch, power dissipation, and response

The nature of analog and breakthrough by digital assistance 

Example: DAC
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Cost up issue by analog parts in scaled CMOS

Cost of mixed A/D LSI will increase with technology scaling, due
to the increase of cost in non-scalable analog.

Large analog must be unacceptable.
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2008.11.06

6

Matsuzawa
& Okada Lab.
Matsuzawa
& Okada Lab.

Technology trend in RF CMOS LSI

Analog & RF CMOS will be replaced by Digitally assisted RF CMOS.

Wireless LAN, 802.11 a/b/g
0.25um, 2.5V, 23mm2, 5GHz

Discrete-time Bluetooth
0.13um, 1.5V, 2.4GHz

M. Zargari (Atheros), et al., ISSCC 2004, pp.96 K. Muhammad (TI), et al., ISSCC2004, pp.268
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Nature of analog: Mismatch and area

Mismatch of analog components is inversely proportional to squire root of area. 

Thus accuracy and performance and cost in analog circuits always trade off. 
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Essential issue in analog technology
To realize high precision circuits always increases power dissipation 
and area  & cost  and decreases frequency performance.
The digital assistance can solve this essential issue of analog.
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Pioneer work in digital assistance
Conventionally large area is required to realize high precision DAC, such 14 bit.
However this results in increase of power and degrade frequency characteristics.

INL DNL

Iowa university demonstrated extremely small area and power can be realized
by digital calibration.

+/- 9 LSB

+/- 0.4 LSB

+/- 5 LSB

+/- 0.35 LSB

Before

After

14b 100MS/s DAC 
1.5V, 17mW, 0.1mm2, 0.13um
SFDR=82dB at 0.9MHz, 62dB at 42.5MHz

Area: 1/50 Pd: 1/20 

Y. Cong and R. L. Geiger, 
Iowa state university, ISSCC 2003 14bit DAC
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Architecture of digitally compensated DAC

External ADC measure the nonlinearity and CAL DAC compensates it.

An idea is excellent, but the implementation (needs ADC) is not smart. 

14bit 100MHz DAC

External ADC

Compensation circuits
Y. Cong and R. L. Geiger, 
Iowa state university, ISSCC 2003
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Our developed 14b DAC without ADC

We developed 14b digitally calibrated DAC without ADC for error measurement.

Good SFDR of 83dB has been attained in spite of bare SFDR is 69 dB. 

Yusuke Ikeda, Matthias Frey, and Akira Matsuzawa 
A-SSCC, 13-3, pp 356-359, Korea, Jeju, Nov, 2007. 
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Method for compensation

Only comparator and cal DAC are required to extract linearity error.
Nature of binary weighted values

im

i

n
nmm +

=
+ += ∑ 2

1
2

1
2
1

1
88765 2

1
2
1

2
1

2
1

2
1

+++=

The error can be extracted by comparing two values and balanced with CAL DAC

RL

Vout

Main DAC

Cal DAC

2
oI

±
4
oI

± 12 −± N
oI

N
oI

2
± 12 +−± jN

oI
ijN

oI
+−±

222 +−± jN
oI

ijN
oI
+−±

2

Comparator

Logic

Data in

5887655 2
1

2
1

2
1

2
1

2
1 δδ =⎟

⎠
⎞

⎜
⎝
⎛ +++−⎟

⎠
⎞

⎜
⎝
⎛ +



2008.11.06

13

Matsuzawa
& Okada Lab.
Matsuzawa
& Okada Lab.

Calibration pass and chip photograph

Extracted errors is stored in registers and used for compensation digitally.

Yusuke Ikeda, Matthias Frey, and Akira Matsuzawa 
A-SSCC, 13-3, pp 356-359, Korea, Jeju, Nov, 2007. 
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OPamp-base design to comparator-base design 

Conventional analog circuits consume static current 

Low power dissipation by digital assistance 

Example: ADC
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Issues of pipeline ADCs
Major issues of pipeline ADCs are caused by OpAmp.  
High OPamp gain is required for high precision ADC,
however it becomes quite difficult with technology scaling.
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Conversion speed of pipeline ADC
Speed of pipeline ADC is proportional to the OPamp current basically. 
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Mega-technology trend in ADCs
A major conversion scheme of ADCs is now changing from pipeline to SA

Pipeline ADC
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SA ADC
Speed of SA ADC is determined by speed of switches, comparators, and logics.
Basically independent of static current.
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Performance overview of SA ADCs
SA ADCs become dominant in every performance range.
In particular FoM has rapidly lowered.
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Progress of CMOS Comparator
Small size MOS can be used for small mismatch circuits 
owing to analog compensation, however static current flows.

Yukawa, et al., JSC, 1986.
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Recent dynamic comparators
Dynamic comparator can cut of  the static current,
however analog compensation is difficult to use.
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V. Giannini, P. Nuzzo, V. Chironi, A. 
Baschirotto, G. van der Plas, and J. Craninckx, 
“An 820uW 9b 40MS/s Noise Tolerant 
Dynamic-SAR ADC in 90nm Digital CMOS,”
IEEE ISSCC 2008, Dig. of Tech. Papers, 
pp.238-239, Feb. 2008.

Dynamic comparators use the fast voltage fall depended 
on input voltage difference

Fast voltage fall

FoM can be reduced

M. van Elzakker, Ed van Tujil, P. Geraedts, D. 
Schinkel, E. Klumperink, B.Nauta, “A 1.9uW 
4.4fJ/Conversion-step 10b 1MS/s Charge-
Redistribution ADC,” IEEE ISSCC 2008, Dig. 
of Tech. Papers, pp.244-245, Feb. 2008.
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Mismatch compensation for dynamic comparator

We developed mismatch compensation technique for dynamic comparator
by using charge pump circuit. 

Feedback loop become stable when mismatch reaches zero.

M. Miyahara, Y. Asada, D. paik, and A. Matsuzawa
A-SSCC 2008
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Effect of digital mismatch compensation

mV7.13)( =σoffsetV

mV69.1)( =σoffsetV

M. Miyahara, Y. Asada, D. paik, and A. Matsuzawa
A-SSCC 2008

Mismatch voltage successfully reduced from 13.7 mV  to  1.69mV @sigma



2008.11.06

24

Matsuzawa
& Okada Lab.
Matsuzawa
& Okada Lab.

Small sized SA ADC 
One issue of current SAR is not small occupied area.
This is due to large capacitance ratio; CMSB/CLSB=2N

Serial capacitors can reduce this ratio, 
however parasitic capacitors degrade accuracy. We solved it by calibration. 
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Yasuhide Kuramochi, Akira Matsuzawa, and 
Masayuki Kawabata 
"A 0.05-mm2 110-uW 10-b Self-Calibrating 
Successive Approximation ADC Core in 0.18-
um CMOS" 
A-SSCC, 8-1, pp 224-227, Korea, Jeju, Nov, 
2007. 
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Effect of digital calibration
We can realize 10b ADC with high SFDR of 72dB ADC in world smallest chip size,
by using digital calibration technique.

[1] J. Craninckx, et. al. ISSCC 2007
[2] Y. Jeon, et. al., ISSCC 2007
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Analog  vs. Digital
Digital (ON, OFF) control can realize lossless conversion. 

Analog regulation
Rreg
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OPamp
RL

Comp+Logic
Vref

RL

Vi SW1
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C

Digital regulation

Clean voltage, 
but low efficiency

Noisy, 
but high efficiency

DC/DC converter
Polar modulator

Ideally efficiency of 100% can be realized
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ΔΣ modulation

Delta-Sigma modulation method can generate average value without  
low frequency noise and large super tones. 
High frequency noise can be suppressed by filter.

Pulse width control Issues: Large Super tones (Fixed frequency spectrums)
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From analog centric RF to digitally assisted RF 

Digital is more stable, robust, and programmable 

Example: Tuner
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Technology trend in RF-CMOS LSI

Analog & RF CMOS will be replaced by digitally assisted analog &RF 
CMOS. High performance, low cost,  stable and robust circuits, 
no or less external components, no adjustment points, 
and high testability are the keys. DSP and ADC will play important roles. 

Analog & RF
CMOS

Digitally Assisted 
Analog & RF CMOS

Signal processing Analog circuits
Analog processing
+External component

DSP+ADC
+ Small and robust analog ckts.

Adjustment External Digital on chip, no external

No or lessExternal components Large #
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For example: AM/ FM tuner

Current AM/FM tuner uses 3 ICs and large # of external components.
Furthermore 12 adjustment points are needed.
Large # of products, but not expensive product.
More efforts to reduce the cost are still required. Courtesy Niigata Seimitsu

Bipolar IC  = 1 (RF)
CMOS IC    = 2 (PLL, RDS)
External  Components=187

12 adjustment points
AM/FM Tuner for home use 
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Analog-centric vs. digitally assisted 

Digitally assisted RF-CMOS tuner can provide user merits.
Very small # of external components and no adjustment points.

Digitally assisted 
Analog & RF CMOS technologyAnalog & RF CMOS technology

External components 187 69 # of external components are 11 
No adjustment pointsCourtesy Niigata Seimitsu
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Analog-centric RF CMOS tuner

1st trial to realize AM/FM tuner by analog-centric RFCMOS technology
Courtesy Niigata Seimitsu
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Analog-centric CMOS tuner technology

1st trial used analog-centric CMOS tuner technology.

External circuits have been replaced by CMOS, however still use analog.
Thus it had many issues and many external components were still needed.

Parts Methods for on-chip Problems

AGC smoother Time division charge and discharge Needs large capacitor for low audio 
frequency

AM/FM IF BPF 1. Low IF( a few hundred KHz)
2.Gm-C BPF with auto alignment, 
SCF

1.poor selectivity(-45dB), 2. SCF Switch 
noise 
3. Center frequency shift by DC offset
4. Poor image rejection ratio (25 to 35dB)

FM Demodulator Pulse count FM detector Poor THD (0.5%)
Stereo Decoder Multi-vibrator VCO, SCF filter Large variation of free-run frequency

Still need external LPF for PLL
RSSI Level adj. Signal detector with DC 

compensation
Can’t cover all process corner

Varactor MOS varactor Too much sharp C-V curve, distorted 
signal

Capacitors Stages Direct connection, use 
small value coupling capacitor

High impedance required, Difficult for low 
frequency

Courtesy Niigata Seimitsu



2008.11.06

34

Matsuzawa
& Okada Lab.
Matsuzawa
& Okada Lab.

Digitally assisted CMOS tuner
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Digitally assisted CMOS tuner has been developed.

DSP realizes Sensitivity:  FM: 9dBuV, AM: 16dBuV
Selectivity:  FM/AM >65dB
SNR:            FM: 63dB, AM: 53dB
Stereo sep: 55dB
Image ratio: FM: 65dB, AM: Infinity
Distortion:   FM: 0.09%, AM=0.25%

Performance

Courtesy Niigata Seimitsu

1. AM/FM demodulations
2. Stereo decoder
3. AM mixer
4. Channel select filter
5. Support for image reject
6. Watch the signal revel and control gain of each stage
7. Parameter control and adjustment with MCU
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Image rejection in low IF receiver

Desired Image
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Image signal can be rejected by using I/Q mixer and phase shift.

Image can be rejected theoretically, however,…

V3
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Required  gain and phase mismatch

0.1 deg and 0.01% are needed for IRR of 60dB
and very difficult to attain by analog technology.

IRR: Image rejection ratio

A. Rofougaran, et al., 
IEEE J.S.C. Vol.33, No.4, 
April 1998. PP. 515-534.
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Conventional  IRR:  35dB 
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Digital image rejection
The dummy image signal is generated by IMO and the controller controls 
signal delay and amplitude on Q path to minimize the I/Q imbalance. 

ADCVGA
+FilterMIXERLNA

FM
I

Courtesy Niigata Seimitsu

Q

Deci.
LPF

Vari.
Delay

Vari.
Gain BPF

IMO Controller

Deci.
LPF

Fixed.
Delay BPF

DSP

to DSP

Image Rejection Ratio >60dB

Image frequency oscillator

From ADCs
IM detect
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Summary

• Analog has serious tradeoffs
– area, cost, mismatch, power consumption, and response

• Analog consumes static power
– OPamp-base Comparator-base

• Analog is weak in robustness and programmability

• Digital assistance can solve these analog issues and 
will be inevitable and reasonable with technology 
scaling.

• Analog and RF circuit design will make great advance 
assisted by digital technology.  
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